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A transformation technique is used to solve the problem of steady free-surface flow 
of an ideal fluid over a semi-infinite step in the bottom. Application of the exact 
free-surface condition results in a nonlinear integrdifferential equation for the 
free-surface angle and solutions of this equation are dependent on step height and 
Froude number. Linearized solutions, based upon small step height are presented and 
indicate that the nature of the free surface formed depends on whether the upstream 
flow is subcritical or supercritical. As the step height is increased, solutions to the 
exact nonlinear equations are obtained using the predictions of the linear theory, or 
possibly a previous nonlinear solution, as an initial estimate. 

1. Introduction 
This paper considers the steady free-surface flow of a stream of ideal fluid which 

is obstructed by a semi-infinite step on the bottom; the restoring force is gravity. 
This problem finds application in hydraulic and coastal engineering and is also 
expected to provide a qualitative description of the flow caused by a long body 
moving close to the sea bed. 

Free-surface flows over various obstacles have been studied for at least the last 
century. Kelvin (1886) considered the stationary wave pattern caused by finite 
elevations or depressions in the bed of a stream and also developed expressions for 
the hydrodynamic forces acting on these obstacles. Several authors have used 
concentrated singularities to model both finite and infinite bodies which are moving 
in streams of finite or infinite depth, e.g. Havelock (1927) and Gazdar (1973). The 
motion of hydrofoils on or within the surface of a fluid has been studied under the 
assumptions of either potential flow or free-streamline flow, e.g. Cumberbatch (1958), 
Moiseev & Ter-Krikorov (1958) and Squire (1957). Reviews of these works, which are 
all mathematically similar and made tractable by the linearization of the exact 
free-surface condition, are given in Wehausen & Laitone (1980) and Seeger & Temple 
(1965). 

Approximate nonlinear theories for purely periodic wave motions were first 
developed by Stokes (1847), by using an expansion in amplitude. Later Korteweg 
& de Vries (1895) produced a third-order theory for long waves in shallow water. This 
cnoidal wave theory was examined by Benjamin & Lighthill (1954) in a new light 
and, for convenience, their work will be referred to as the BL theory for the remainder 
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of this paper. It was shown that the volume flow per unit span &, the total head R, 
and the rate of flow of horizontal momentum (corrected for pressure force, and 
divided by density) S, determined the wavetrain uniquely in cnoidal theory. It was 
further suggested that these three quantities probably determined the wavetrain 
uniquely in general. To this end, the combinations of &, R and S that represent 
possible flows in the general case were illustrated by a diagram which showed the area 
of parameter space occupied by wavelike solutions. However, at that time the 
boundary corresponding to what was thought to be the highest wave was not known. 
It was shown that the diagram could be used in steady flow problems to determine 
what losses of momentum and energy a given stream could undergo and this 
determines the maximum wave resistance on an obstacle spanning a subcritical 
stream. Detailed comparisons of the present results with their work support the 
general applicability of the theory. 

Various types of obstructed free-surface flow have been analysed using approxi- 
mate nonlinear theories of similar accuracy to the cnoidal theory of Benjamin & 
Lighthill, e.g. a sluice gate projecting into the free surface by Benjamin (1956) who 
also considered the effect of arbitrary bumps on the bottom of a stream (Benjamin 
1970). A similar problem was also examined by Miles (1986). 

A theory of directed fluid sheets was developed by Green & Naghdi (1976). It was 
shown that in the absence of dissipation the equation that determines the free surface 
reduced to the corresponding equation of Benjamin & Lighthill involving &, R and 
S. Allowing for the possibility of dissipation, Naghdi & Vonsarnpigoon have 
considered the steady subcritical flow past a step (1986~)  and also the effect of bumps 
on the bottom of a stream (Naghdi & Vonsarnpigoon (1986b). In the case of a step 
on the bottom, the conditions that were applied across the step essentially determined 
the drag on the step. In  the absence of dissipation, the results are compared with 
the present analysis and large discrepancies appear, the reasons for which are 
discussed fully. 

The advent of high-speed digital computers appears to have stimulated the solution 
of problems in which the exact, nonlinear, free-surface condition is retained. As the 
position of the free surface is, apriori ,  unknown there have been a variety of 
approaches to the solution of this type of problem. Von Kerczek & Salvesen (1977) 
considered the generation of waves on the surface of a stream by an imposed 
distribution of pressure on the free surface. By expressing all field equations in 
finite-difference form and assuming a solution of initially linear form they were able 
to iterate both the mesh points used and the solution at  these mesh points until the 
equations of motion, boundary conditions and exact free-surface condition were 
satisfied. Haussling & Coleman (1977) developed a boundary-fitted coordinate system 
which numerically generates a new coordinate system in which coordinate lines in 
the new system correspond to physical boundaries. This technique can be used for 
both steady and unsteady free-surface flows. Shanks & Thompson (1977) have 
extended this type of method to enable viscous, time-dependent flows to be analysed. 

The use of velocity potential 9, and stream function +, as independent variables 
was first introduced by Stokes (1880) and has been successfully used by many authors 
to solve problems concerned with solitary waves or purely periodic wave motions. 
A recent example of this approach can be found in Cokelet (1977) where steep gravity 
waves in water of finite depth are analysed numerically using a (q5, +)-formulation 
and the exact free-surface condition. This work gives an extensive tabulation of 
purely periodic nonlinear wave parameters and supplements the BL theory by 
showing that the barrier that closes the region in (RS)-space in which steady waves 
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can exist is formed by waves with the greatest total head and momentum flux but 
does not exactly correspond to waves of greatest height. 

An analysis of an obstructed free-surface flow in which the exact free-surface 
condition was retained is given by Forbes & Schwartz (1982) who consider flow over 
a semicircular bump in the bed of a stream of finite depth. These authors used a 
Joukowski transformation to remove the stagnation point at the front of the 
obstruction and reformulated the problem in a transform plane by use of a 
(#, +)-coordinate system to obtain an integro-differential equation for the trans- 
formed free-surface elevation. The free-surface elevation in the physical plane together 
with other quantities of interest, e.g. the drag force on the semicircle, were then 
calculated from the solution to the integrdifferential equations and appropriate 
inversion and integration of the Joukowski transformation. The analytic linear and 
numerical nonlinear results that they presented both predicted that the free surface 
would be wave free for supercritical flows and would contain a downstream wavetrain 
for subcritical flows. No restriction on the dimensionless semicircle radius was found 
to be necessary for the existence of steady flows and the work appears to be limited 
purely by the amount of computing time needed to solve the nonlinear integro- 
differential equations. 

Another technique that has been applied to the periodic-waves problem by Bloor 
(1978) is that of direct conformal transformation of the physical plane onto a 
half-plane. The transformation used is a generalization of the Schwartz4hristoffel 
transformation and involves the Hilbert transform of the free-surface angle. As a 
result of mapping onto a half-plane a simple complex potential can be written and 
this, together with the free-surface condition, yields a nonlinear integro-differential 
equations for the free-surface angle. The classical water-wave theories were recovered 
by expansion of this equations for small free-surface angle and numerical solutions 
for large-amplitude waves were computed. 

As suggested by Bloor (1978) the transformation can easily be modified to cope with 
obstructions to a free-surface flow and an obstruction in the form of a semi-infinite 
step on the bottom of a stream is the subject of the rest of this paper. After 
transformation onto a half-plane, application of the exact free-surface condition 
results in a nonlinear integro-differential equation for the free-surface angle. The 
solutions to this equation are dependent on the step height and the upstream Froude 
number. Linearized solutions, based upon small step height are derived and indicate 
that the nature of the free surface formed is dependent on whether the upstream flow 
is subcritical or supercritical. Numerical nonlinear solutions to the integro-differen- 
tial equation confirm the predictions of the linear theory for small step height but 
discrepancies in quantities, particularly wavelength and drag, are apparent as the 
step height increases. The accuracy of the numerical solutions is compared with an 
asymptotically exact hydraulic theory in the supercritical case and very good 
agreement is found between the two solutions. In  the subcritical case the drag on the 
step is within the range of values predicted by the approximate theory of Benjamin 
t Lighthill. Furthermore, the wave amplitude associated with the given drag is in 
close agreement with that predicted by cnoidal wave theory. 

2. Mathematical formulation 
The steady two-dimensional free-surface flow of an inviscid, incompressible and 

irrotational fluid over a semi-infinite rectangular step is considered. Far upstream of 
the step the flow is uniform with speed c and depth h. A Cartesian coordinate system 
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FIGURE 1.  The non-dimensional physical plane ( a )  and the corresponding transform plane (b ) .  

(X, Y) has its origin at the bottom of the step, which is of height s. The restoring 
force in the negative Y-direction is gravity. The assumptions made above allow the 
introduction of a velocity potential Q, and a stream function Y. The stream function 
is chosen so as t o  have the value zero on the free surface and hence the value - ch 
along the stepped bottom. The condition on the free surface, where the pressure is 
uniform, is obtained from Bernoulli's equations. The problem is non-dimensionalized 
using the transformations 

W 
h'  h ch ' ch ' ch ' 

w=- ,=x y = - ,  Y $2 @ = -  Y 

where w = q5 + i@ is a complex potential. The Bernoulli condition on the free surface 
can be written 

where F = c/(gh)t is a Froude number, ys = y,(x) is the dimensionless free-surface 
elevation and cp is the fluid speed. The geometry of the flow is shown in figure 1 (a), 
where 6 = s / h  is the dimensionless step height. 

The problem is now reduced to finding a complex potential satisfying the 
appropriate boundary conditions. It is convenient to transform the rather complicated 
region occupied by the fluid in the physical z-plane into the upper half of the <-plane. 
The transformation used is similar to the one used by Bloor (1978) for the 
periodic-water-waves problem. With the correspondence of the physical and trans- 
formed planes shown in figure 1 (a) and ( b )  the transformation can be written 

p q 2 + y Y ,  = +P+ 1, (2.2) 

where < = t + i s  and e(t) is the angle made with the x-axis by the tangent to the free 
surface at the point that corresponds to 6 = t. When f; is real and positive the integral 
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in (2.3) becomes a principal value together with a contribution i6(E) that ensures that 
dz/d[ is an analytic function of c. 

1 e(t) It is convenient to write 
p = - -  

x 5-t dt, 

where f denotes the Cauchy principal value of the integral. Then on the free surface 

(2.4) 

In the uniform flow far upstream of the step the depth of the fluid is unity. Thus 
by integrating (2.3) along the vertical line from A to F in the z-plane, i.e. from A' 
to F around a large semicircle in the c-plane, it can be seen that K = - i/x. In  order 
to relate the height of the step to the location of the point B in the 5-plane, (2.3) 
is integrated over the image of the step in the {-plane. This gives 

In the c-plane the flow is that of a sink of strength l /x  at the origin giving the 
complex velocity on the free surface as 

where u and v are the x- and y-components of the fluid velocity. 
From this stage it will be more convenient to use the variable q5 = - ( l /x)  log, E 

rather than E,  bearing in mind that the complex potential is due to a source of strength 
1/x at the origin in the {-plane. Equations (2.4) and (2.6) are now suitable for 
substitution into the derivative of the Bernoulli equations (2.2). After a little algebra 
this can be put in the form 

where 

Equations (2.5) and (2.7) represent the exact formulation of the problem of 
free-surface flow over a step in terms of coupled integrdifferential equations for 
the free-surface angle. The solution to these equations is dependent on the two 
parameters : step height and Froude number. Analytic and numerical solutions to 
these linearized and nonlinear equations respectively are given later in this paper. 

One quantity of physical interest is the drag force on the step caused by the fluid 
flow. In this idealized model the calculated drag force will represent the change in 
momentum flux due to the change in the stream produced by the step together with 
a wave drag in the subcritical case. The drag force D is obtained by integrating the 
pressure over the step. If the atmospheric pressure is taken to be zero and the 
hydrostatic component of the drag is subtracted out, it is found that the remaining 
drag pgh2D is given by 
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This can be integrated most conveniently by using (2.4) and (2.6) to express q and 
y in terms of qi to obtain 

where 

3. Approximate methods 
Before an attempt is made to solve the full nonlinear equations of $2 it is essential 

to have some initial estimates of the solution to provide a basis for an iterative 
numerical solution of the nonlinear equations. This approximate solution to the 
problem is obtained from a linear theory. Furthermore the parameter range for which 
solutions are possible in the supercritical case can be determined from a one- 
dimensional hydraulic theory. 

3.1. Linearized two-dimensional theory 
If the step height B is assumed to be small then the images under the transformation 
(2.3) of the top and bottom of the step will be close together in the (;-plane. Writing 
13 = 1 + 6, where 6 is small, it can be seen that 8 = O(6) and (2.7) can be linearized 
to give 

This equation is readily solved by use of Fourier transforms. The general solution 
depends upon whether the upstream flow is supercritical (P > 1) or subcritical (P < 1) 
and is conveniently written as 

6F2 +0° k e-ikd dk + H(1- F') {A cos (k, q5) + B sin (k, qi)}, (3.2) *('I = % lk--OO cosh k{Pk- tanh k} 

where H is the Heaviside step function, A and B are arbitrary constants and k, is 
the positive root of the equation F k  = tanh k. 

The integral in (3.2) cannot generally be evaluated in closed form. By choosing a 
suitably deformed contour the integral may be evaluated as an infinite series by using 
the residue theorem. A full discussion of a similar integral is given by Lamb (1932). 
For supercritical flow the integral consists of terms that are exponentially small at 

giving 

where /?, are the positive roots of the equation Fa/? = tan/? (n = 1,2, ...). The 
special case F = 00, which corresponds to free-streamline flow, gives rise to a 
closed-form solution of the form 

8(#) = &9 sech ($nqi). (3.4) 

For subcritical flow the integral in (3.2) gives rise to wavelike solutions and the 
condition 8( - 00) = 0 is satisfied by an appropriate choice of A and B to give 

where 8, are as defined previously. 
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49) = 9 + 44, 
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The elevation of the free surface is found by integrating (2.4) and then linearizing 

I 
to obtain 

~ 

y(9) = l + s  O(s)ds+o(S). 
8--m 

Linearization of (2.5) gives S = 2~ to this order of approximation, The free-surface 
elevation when x > 0 can now be shown to be 

(F = 00)  (3.8) 2e 
ys = i + - tan-l [e*2’2] + O ( B )  

x 

(2-e+nZ) 
+ 2t+( 1 - cos (k, x)) + O ( E )  (F < 1). (3.9) y s =  l+€P x cos pn{sec2 Bn - P} cosh k,{sech2 k, - F} 

This linear theory shows that, in supercritical flow, the free surface rises over the 
step, the slope of the surface becoming more gradual, until far downstream of the 
step the free surface is asymptotically flat. The depth of fluid far downstream is in 
general different from that of the fluid upstream and is such that downstream 
conditions could become critical (F = 1) owing to the presence of the step. In  the 
free-streamline case the upstream fluid depths are equal, which is in agreement with 
accepted theory. For subcritical flows the level of the free surface falls as it approaches 
the step, while far downstream of the step a periodic wavetrain is predicted. Equation 
(3.9) shows that the amplitude of these waves depends upon both step height and 
Froude number whereas the wavelength depends only upon Froude number. This has 
important ramifications for the numerical solution of the nonlinear equations and is 
discussed further in the next section. Again it is seen that downstream conditions could 
become critical due to the change in the mean fluid depth caused by the step. 

The drag on the step can be found from (2.8) in the form 

(3.10) 

This is evaluated numerically and the results are presented in $5.  In  the case of 
free-streamline flow, the integral is elementary giving the drag as zero, as would be 
expected. 

3.2. One-dimenaim1 t h w y  
For gravitational flow, the flow far upstream and far downstream of the step is 
uniform and one-dimensional, The equations of continuity and momentum can 
therefore be written 

F 
- = (y(ao)-€)t, 
Fa3 

(3.11) 

(3.12) 

where y( a0 ) is the elevation of the free surface at infinity and Fa is the Froude number 
based upon the fluid depth and speed at infinity. The condition for (3.11) to have 
real positive roots is 

B 6 ; (2+F-3fi) .  (3.13) 
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When strict inequality holds the appropriate value of y( 00 ) must be taken. If equality 
holds, (3.11) has a double positive root y(00) = e + g .  A t  this step height the 
downstream Froude number is, by (3.12), equal to one and the flow cannot exist 
without the presence of a discontinuous hydraulic jump. An expression for the drag 
on the step can be obtained using a rate-of-change-of-momentum argument. It is 
found that 

(3.14) 

The simple theory of this section indicates that solutions to the full two-dimensional 
problem might be expected for 8 in the range given by the inequality (3.13). In 
addition the values predicted by (3.1 1) and (3.14) will serve as a check on the accuracy 
of the numerical nonlinear solutions of the next section. 

1. { Y ( r n 1 - E  
D = gl-yz(m)+2€(zJ(0O)-l)}+P 1 -  

4. Numerical method 

numerical method. A mesh of discrete 4- and &points is defined by 
To obtain nonlinear solutions to (2.5) and (2.7) it is necessary to resort to a 

4, = ih, e, = e(4,) ( -N s i s N), (4.1) 

where h is the discretization interval and N is the number of discrete points either 
side of the origin. The objective of the numerical method is to find the values of Or 
within this range. Equation (2.7) is decretized, with an error of O(h4),  by using a 
finite-difference approximation for the derivative to give 

e-"$i + 1 
+ 2 (  

>" exp{SP,} sinei = 0 (-N < i < N ) ,  (4.2) e-"$i + b 

where 

The discretization of 4 is complicated by the singularity in the integrand and the 
infinite range of integration. The range of integration is truncated to [ # - z N ,  $ E N ] ,  the 
integrand being exponentially small outside this range. The truncated range is 
subdivided into three subranges, [#-2N, [q5t-l, 91+1] and [$d+l, # 2 N ] .  In the first 
and third of these ranges the integrand is regular and the composite Simpson's rule 
is used to discretize the integrals. In the range [dt-l, 9,+1] the integrand is singular 
and the integral is evaluated, in the sense of a Cauchy principal value, by using 
the Taylor expansion of the integrand about the point 4,. The result, after some 
algebra, is 

where S, = j h  are the integration points, Wi are the weights appropriate to a 
Simpson's rule and B;, e;,O;l are the first three derivatives of 0,. The truncation error 
in (4.3) is O(h4). By replacing the derivatives by appropriate finite-difference 
representations pZ can be represented as a weighted linear combination of the 
Oi, -2N < i < 2N with a truncation error of O(h4).  The values of 0, in the range 
-2N < i < - N are taken to be the linear values of $3, i.e. (3.3) and (3.5) for 
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supercritical flows and subcritical flows respectively. The values of Bi in the range 
N < i < 2N are again taken from (3.3) for supercritical flows. In subcritical flows 
these values are found by periodically extending the nonlinear tIt from the range 
- N < i < N into the range N < i < 2N. This extrapolation is performed to an 
accuracy of O(h4). The singularity in (2.5) is removed by some elementary trans- 
formations to give, after discretizing by Simpson’s rule, 

2(1-b)h,2N1 ~ X P  ( Q j )  

[ ( l -b)  sin2+,-b]’ € =  Z aj cos2 $, 
3= ,-0 

(4.4) 

where +, = jh, are the integration points, 2N, h, = ?jn defines the way the range of 
integration [0,4n] is partitioned and a, are the weights. The value of h, was chosen 
to be as close to h as possible in all calculations. The functional Q, contains an infinite 
range of integration which is dealt with in the same manner as pi to give 

Equations (4.2), (4.3), (4.4) and (4.5) are recognized to be a set of 2N+2 nonlinear 
algebraic equations for the 2N+2 unknowns e,, - N < i < Nand b. 

The solution of these equations was carried out by a hybrid Powell’s method 
(Rabinowitz 1970) using the linear solutions of $ 3  as a first approximation. The 
method converged quickly to the solution of the nonlinear equations provided the 
step height was not too large ; typically four iterative cycles were necessary to obtain 
the nonlinear solution. When the step height was large a previously obtained 
nonlinear solution was used as a first approximation instead of the analytic linear 
solution. The residual errors in the nonlinear solution, found by substituting a 
converged solution back into (4.2), (4.3), (4.4) and (4.5) were less in L, norm than 

As a further check on the numerical method a converged solution was substituted 
into an integrated version of (2.7) and the residual error was found to be of the same 
order of magnitude in both cases. Various numerical experiments on mesh size and 
mesh fineness were performed in order to determine when the numerical solution 
became mesh independent. For subcritical flows with P = 0.5 it was found that 
N = 80, h = 0.125, i.e. 161 points representing the free surface, gave satisfactory 
results whereas for supercritical flows with F = 2.0 a mesh with N = 40, h = 0.2, i.e. 
81 points representing the free surface, was sufficient. Results at these Froude 
numbers were typical of all results that were obtained and are shown in $5. The 
free-surface elevation and drag were calculated by numerical integration of (2.4) and 
(2.8). The singularities in these equations were removed in a similar manner to the 
one employed in (2.5) prior to numerical integration by Simpson’s rule. 

for all results presented in this paper. 

5. Numerical results 
5.1. Supercriticalflows (P > 1) 

Nonlinear solutions for supercritical flows were found throughout a wide range of 
Froude numbers and step heights. Results showing the free-surface profile and drag 
at F = 2.0, over a range of step heights, are given in figures 2 and 3. These results 
are typical of the type of solution found and demonstrate the monotonic rise in 
free-surface elevation with rise to step height. The range of step heights for which 
solutions could be found at this Froude number was 0 < E < 0.6188, which is in good 
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FIQ~CE 2. Nonlinear solutions at F = 2 for various values of E.  (a) e = 0.2, ( b )  0.4, (c) 0.6, (d) 0.6188. 
Also shown (-.-) is the linear solution for E = 0.2. 
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FIQURE 3. The drag on the step as a function of step height compared with the linear solution 
for supercritical flow. 

agreement with the range predicted by inequality (3.13). No solutions were found 
outside this range. 

The difference between the linear and nonlinear solutions only becomes apparent 
downstream of the step, this difference becoming more apparent as critical down- 
stream conditions are approached. The drag, which is over-estimated by the linear 
solution, increases monotonically with step height, the relative error of the linear and 
nonlinear drags being no more than 16 % . As remarked earlier the accuracy of these 
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FIQUF~E 4. The free-surface profile for P = 0.5 compared with the linear solution for three values 
of step height: (a) E = 0.01, (b)  0.1, (c) 0.156, the largest value for which solutions were obtained. 
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solutions is easily checked by substituting the maximum free-surface elevation and 
drag into (3.11) and (3.14). For e = 0.2 the numerical method gives a maximum 
elevation of 1.2744 which is in error by O( while fore = 0.6188 the nonlinear drag 
was 0.2934, which is in error by 0(10-4) from the exact result 0.2929. These results 
are consistent with the discretization error in the numerical modelling of the 
equations. 

Forbes & Schwartz (1982), when discussing supercritical flows over a semicircular 
obstruction with an otherwise flat bottom, conjectured that the limiting form of the 
free-surface profile would have a sharp 120" corner at its peak. Clearly a similar 
conjecture could be made with regard to the flow over a step. No numerical evidence 
was found that would support this idea, although the present method would fail to 
converge in such circumstances, because the stagnation point at the corner would 
imply a singularity in the functional P. 

5.2. Subcriticaljow (P < 1 )  
The range of parameter values for which the nonlinear, wavelike, subcritical flows 
can be found is restricted computationally by the need to fit several wavelengths of 
the solution in the positive half of the mesh. The wavelength is determined as part 
of the iterative solution and was found to become large as the downstream flow 
became critical. Increasing the mesh size was also unhelpful as this tended to obscure 
the flow detail above the step. Results showing the free-surface profile and drag a t  
F = 0.5 and a range of step heights are given in figures 4 and 5. For very small steps 
(e = 0.01) the amplitude and wavelength of the linear and nonlinear solutions are 
in good agreement as shown in figure 4(a). As the step height is increased a distinct 
difference appears between the solutions. At 6 = 0.10 the amplitude of the nonlinear 
solution is O(c)  different from the linear amplitude whereas the nonlinear wavelength 
is O(1) different from the linear wavelength; see figure 4(b). For e = 0.156, the largest 
step for which a solution at this Froude number was obtained, figure 4 (c) shows the 
amplitude and wavelength of the linear solution to be grossly in error. 

At this stage the nonlinear solution is showing the classical narrow-peak, broad- 
trough characteristics of the Stokes' theories and values of wave amplitude and 
wavelength, when adjusted to the local depth of fluid under the wave, are in good 
agreement with those predicted by these classical theories. It is well known that larger 
amplitude waves than the ones presented here have been calculated numerically. 
Cokelet (1977) tabulates a; solution for a wave that has a maximum amplitude to 
wavelength ratio of 0.1436 whereas the largest wave of similar characteristics 
calculated in this paper had a ratio of 0.062. For flow over a semicircular bump a t  
F =0.5 Forbes & Schwartz were able to generate waves numerically up to a 
maximum non-dimensional amplitude of x 0.13. A t  the same Froude number the 
largest wave presented here has a comparable amplitude of x 0.11. A finer, more 
extensive mesh would no doubt enable solutions to be found nearer the upper limit 
of the range predicted by previous numerical work. However, the amount of 
computing time available precludes this at present. 

The drag on the step in subcritical flows is in general negative. This reflects a 
reduction in the total drag on its hydrostatic level caused by the fall in free-surface 
elevation above the step. An estimate of the wave drag on the step can be calculated 
by subtracting from (2.8) the contribution to the drag made by the mean one- 
dimensional flow. Results for the wave drag are shown in figure 5. These results again 
demonstrate the importance of nonlinear effects as the step increases in size. 

In order to make comparisons with the BL theory, the values of R and S for the 
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FIQURE 5. The drag on the step due to the presence of the waves as a function of step height for 
F = 0.5. Also shown is the drag given by the linear theory. 

present numerical results for a particular value of Q are calculated. It is convenient 
to non-dimensionalize R and 8 by R, and S, respectively, where the suffix c refers 
to critical conditions for the particular value of Q. Thus 

s = $!3/2g@. r = +R/2gaQ!, 

Now the uniform flow upstream of the step is represented by a point that lies on the 
upper branch of the cusped curve in figure 6 and for F = 0.5 is denoted by the 
point P, . 

In  their analysis, Benjamin & Lighthill considered an obstacle spanning the 
subcritical stream and, since no dissipation occurred, the drag on the obstacle was 
represented by a change in s at constant r .  Thus all possible wavelike flows 
downstream of the obstacle could be represented by the points on the line r = constant 
between the upper and lower branches of the curve in figure 6, and hence an upper 
bound on the drag was determined. 

In  interpreting the present results in terms of the BL theory a little care must be 
taken owing to the change in level of the bottom in this problem. The total head R 
is measured from the bottom of the channel and hence, since energy is conserved at 
the step, the value of R downstream of the step is gsh less than its value upstream. 
However, Q is clearly the same both upstream and downstream of the step and thus 
the scales Re and S, are also the same. This means that figure 6 can be used to 
illustrate the present numerical results directly. The point P, represents the upstream 
uniform flow and the points PI, p Z ,  . .., p5 represents the present numerical wavelike 
solutions corresponding to E = 0.05,0.1,0.12,0.142,0.156 respectively. It is clear that 
the numerical solutions fall in the area of (r, 8)-space predicted by the BL theory. 

Of course, the BL theory does not actually predict the wave drag and waveform 
associated with a particular obstacle but it seems worthwhile to compare the 
approximate cnoidal wave amplitude with the numerical solution. For E = 0.156, the 
values of r and s can be found from the numerical results and with these values 
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FIQURE 6. Energy us. momentum-flux diagram for flow over a step. Po corresponds to uniform 
subcritical flow, &, p Z ,  . . ., represent wavelike solutions, all at F = 0.5. 

the amplitude of the cnoidal wave system downstream is easily predicted from the 
BL theory. The comparison with the numerical solution is shown in figure 4 ( c )  and it 
can be seen that the agreement is remarkably good. 

It was pointed out in $1 that the method of directed fluid sheets employed by 
Naghdi & Vonsarnpigoon (1986~)  reduced to the cnoidal wave theory in the absence 
of dissipation. In view of this and the comparisons made above it might be thought 
that good agreement would be obtained with the directly comparable problem of flow 
over a step. However, with E = 0.156 and an upstream Froude number of 0.5, the 
theory of Naghdi & Vonsarnpigoon would predict a downstream wavetrain of cnoidal 
waves of amplitude 0.242h, which is more than twice what it should be. The reason 
for this large discrepancy is the boundary condition used at the discontinuity on the 
downstream height of the wave crest, namely that the crest height is the same as 
the height of the undisturbed upstream free surface. This essentially fixes the drag 
on the step. It can be seen from the numerical solution that in fact for this value 
of E the crest height is about 0.047h less than Naghdi & Vonsarnpigoon's value. 

6. Conclusions 
Steady two-dimensional free-surface flow over a step has been investigated 

analytically and numerically. The transformation technique used to reduce the 
physical problem to an integro-differential equations for the free-surface angle B can, 
with minor modifications, be used to deal with any polygonal or curved obstruction 
which could be partially immersed, immersed, or part of the bottom. Both the 
two-dimensional linear solutions for small step heights and the numerical nonlinear 
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solutions show that there is a rise in free-surface elevation for supercritical (F > 1) 
flows and a depression of the free-surface elevation together with a wavetrain for 
subcritical flows (F < 1). The range of step heights E and Froude numbers F i n  which 
solutions for steady supercritical flow over a step exist, determined by one- 
dimensional theory, coincided with the range in which it was possible to determine 
numerical solutions to the two-dimensional nonlinear problem. 

Reasonable agreement is found between the linear and numerical nonlinear solu- 
tions when the step is small. As the step height is increased the supercritical linear 
flow gradually loses its accuracy whereas the subcritical linear flow quickly becomes 
totally inaccurate. In  particular, the wavelength of the downstream wavetrain is 
quite different from that predicted by the linear theory. 

Previous work on solving free-surface flows over obstructions has also utilized a 
transformation technique although the transformation used has only relocated the 
image of the obstruction in a convenient way, leaving the free surface still unknown. 
The transformation used here relocates the obstruction and the free surface into 
known positions which enables a complex potential to be written. It is worth pointing 
out that the singular integral P is evaluated by a special method in $4 and it was 
the choice of this method that was found to give the most accurate numerical results 
when solving the nonlinear integro-differential equation. 

The authors are indebted to Dr D. H. Peregrine for the suggestion that detailed 
comparisons with the Benjamin-Lighthill theory should be included in the paper. 
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